DM Stat-1 Stat-Chat
Link to Home

Link to Articles

Link to Consulting

Link to Seminar

Link to Stat-Chat

Link to Software

Link to Clients

A Unique Data Mining Tool
 for Direct Marketing
 Bruce Ratner. Ph.D.

The GenIQ Model© is an evolutionary advance in data mining methodology developed and patented by Dr. Bruce Ratner. GenIQ offers exceptional predictions with minimal error variance, and a unique feature accommodating dirty and incomplete data. GenIQ can handle both classification (e.g., target yes-no response variable) and regression (e.g., target continuous sales variable) problems with categorical, ordinal and continuous candidate predictor variables.

GenIQ is designed for the optimization of the ubiquitous decile analysis (gains chart). When GenIQ achieves this goal - for either a simple or complex model - the visual displays produced are easy on the analyst's eyes for understanding the impact of any relevant predictor variable or pair of predictor variables on the target variable, thus revealing the underlying data structure.

GenIQ is a tool to be used virtually without data preparation - except for insuring there are no impossible or improbable values (e.g., age of 120 years, or a boy named Sue). GenIQ quickly leads to a detailed understanding of the value of the data, i.e., the identification of the key-drivers of the target variable. The GenIQ model output looks like a tree, not like a CHAID or CART tree, but like itself! Actually, it is technically a computer program, thus the GenIQ Model is a set of computer code. Each branch, which defined by two or more variables tied-together by one or more functions, is the identification of genetic-evolved key-drivers of the target variable. This is the unique data mining feature of the GenIQ Model in the tree below.

Thus, the following pieces of structure mined by GenIQ in predicting response are:

     1. Structure_1 (mini-model #1) = 3 / recency_mos 
     2. Structure_2 (mini-model #2) = no_bal_decr + mos_on_file 
     3. Structure_3 (mini-model #3) = no_of_trans / hi_balance 
     4. Structure_4 (mini-model #4) = Structure_3 / 3 
     5. Structure_5 (mini-model #5) = Structure_1 / Structure_2 
     6. Structure_6 (mini-model #6) = tranx_active=med / Structure_3 
     7. GenIQ Model (Super-structure) = Structure_6 - Structure_4

For another excellent GenIQ data mining illustration - where it serves as a "data straightner" - seeking the maximum predictive power of a variable as well as providing the necessary (but not sufficient) any-model assumption of the relationship between target and predictive variables is "straight," go here.  

For an eye-opening preview of the 9-step modeling process of GenIQ, click here.