Link to Home

Link to Articles

Link to Consulting

Link to Seminar

Link to Stat-Chat

Link to Software

Statistical Modeling & Analysis, Data Mining
for Marketing Managers and Analysts

~ Two-Day Course ~

DAY ONE
I. MODELLING BASICS
  A. Representation
  B. Performance Criterion
  C. Alternative Methods
  D. Modelling Process
  a. Variable Selection
  b. Model Assessment
  c. Model Validation
II. EXPLORATORY DATA ANALYSIS (EDA)
  A. What is it, and why do it?
  B. The Hallmarks
  C. Stars and Profile Curves
  D. RE-EXPRESSING
  a. Symmetry
  1) Ideal Shape
  b. Straightening
  1) Weakness of R-square
  c. Smoothing
  1) Critical Step
III. TREE MODELS
  A. Primer
  B. CHAID vs. CART vs. CLS
  C. Many Uses
IV. RESAMPLING
  A. Jackknife and Bootstrap
  B. Bootstrapped Decile Analysis
V. RE-EXPRESSING MANY VARIABLES
  A. Principal Component Analysis (PCA)
  B. Case Studies
VI. PRINCIPAL COMPONENT ANALYSIS
  A. Compositional Data
  B. Relation with Factor Analysis
DAY TWO
VII. BINARY LOGISTIC REGRESSION
  A. Model Specification
  B. Linear Probability Model vs. Logit vs. Probit
  C. Logistic Regression Interpretation
  D. Extensive Case Study
VIII. EDA PRODUCT AFFINITY
  A. CHAID and PCA
IX. PCA PRODUCT AFFINITY
  A. Case Study Illustration
  B. PCA Segmentation
X. LOGISTIC REGRESSION FAMILY
  A. Multinominal Logistic
  a. Expanding the binary logistic model
  b. Case Study
  B. Ordinal Logistic
  a. Specification
  b. Key assumption
  C. Weighted Least-Squares
  a. Specification
  b. Zipcode Modelling
XI. ALTERNATIVE RESPONSE MODELLING METHODS
  A. Statistical Methods
  B. Artificial Neural Networks
  C. Genetic Algorithms
  D. Comparative Evaluation


DM STAT-1 CONSULTING / br@dmstat1.com
574 Flanders Drive / North Woodmere, NY 11581 / U S A
Voice 1-516-791-3544 / Fax 1-516-791-5075
Toll Free 1 800 DM STAT-1